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Preface

Human life expectancy has increased over the past three centuries, from approxi-
mately 30 years in 1700 to approximately 70 years in 1970 [4]; one of the main
factors of this improvement is a result of the decline in deaths caused by infectious
diseases. In contrast to this decline in mortality, both the magnitude and frequency of
epidemics increased during the eighteenth and nineteenth centuries, principally as a
result of an increase of large population centers in industrialized societies [4]. This
trend then reversed in the twentieth century, mainly due to the development and
widespread use of vaccines to immunize susceptible populations [4]. The human
invasion of new ecosystems, global warming, increased international travel, and
changes in economic patterns will continue to provide opportunities for the spread
of new and existing infectious diseases [65].

New infectious diseases have emerged in the twentieth century and some existing
diseases have reemerged [65]: Measles, a serious disease of childhood, still causes
approximately one million deaths each year worldwide. Type A influenza led to
the 1918 pandemic (a worldwide epidemic) that killed over 20 million people.
Examples of newly emerging infectious diseases include Lyme disease (1975),
Legionnaire’s disease (1976), hepatitis C (1989), hepatitis E (1990), and hantavirus
(1993). The appearance of the human immunodeficiency virus (HIV) in 1981, which
leads to acquired immunodeficiency syndrome (AIDS), has become a significant
sexually transmitted disease throughout the world. New antibiotic-resistant strains
of tuberculosis, pneumonia, and gonorrhea have emerged. Malaria, dengue, and
yellow fever have reemerged and, as a result of climate changes, are spreading into
new regions. Plague, cholera, and hemorrhagic fevers (e.g., Ebola) continue to erupt
occasionally.

In 1796, an English country doctor, Edward Jenner, observed that milkmaids who
had been infected with cowpox did not get smallpox, and so he began inoculating
people with cowpox to protect them from getting smallpox (this was the world’s
first vaccine, taken from the Latin word vacca for cow) [65]. Mathematical models
have become important tools in analyzing both the spread and control of infectious
diseases. The first known mathematical epidemiology model was formulated and
solved by Daniel Bernoulli in 1760 [92]. The pioneering work on infectious
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disease modeling by Kermack and McKendrick has had a major influence in the
development of mathematical models of infectious diseases [116]. These authors
were the first to obtain a threshold result that showed the density of susceptibles
must exceed a critical value for an outbreak to occur [65]. In the early twentieth
century, the foundations of modern mathematical epidemiology based on compart-
ment models were laid, and mathematical epidemiology has grown exponentially
since the middle of the previous century [92]. An extensive number of models
have been formulated, analyzed, and applied to a variety of infectious diseases,
including measles, rubella, chickenpox, whooping cough, smallpox, malaria, rabies,
gonorrhea, herpes, syphillis, and HIV/AIDS [64].

Studying these somewhat simple mathematical epidemiology models is crucial
in order to gain important knowledge of the underlying aspects of the spread of
infectious diseases [64]; one such purpose of analyzing epidemiology models is
to get a clear understanding of the similarities and differences in the behavior of
solutions of the models, as this allows us to make decisions in choosing models for
certain applications. Mathematical models and computer simulations are extremely
useful tools for building and testing theories, assessing quantitative conjectures,
answering qualitative questions, and estimating key parameters from data; epidemic
modeling can help to identify trends, suggest crucial data that should be collected,
make general forecasts, and estimate the uncertainty in forecasts [65].

The transmission of a disease, which depends on its intrinsic infectiousity as
well as population behavior, is a crucial part in the medical and statistical study of
an epidemic [38]. In mathematical modeling, these two aspects are summarized in
the contact rate and the incidence rate of a disease, which are the average number
of contacts between individuals that would be sufficient for transmitting the disease
and the number of new cases of a disease per unit time, respectively [65]. Empirical
studies have shown that there are seasonal variations in the transmission of many
infections [69]. Examples include differences in the abundance of vectors due to
weather changes (e.g., dry season vs rainy season), changes in the survivability
of pathogens (outside hosts), differences in host immunity, and variations in host
behavior (e.g., increased contacts between individuals in the winter season from
being indoors) [39, 53]. For childhood infections such as measles, chickenpox, and
rubella, it has been observed that the rates of transmission peak at the start of the
school year and decline significantly during the summer months [69]. An analysis
of measles data in New York demonstrates that sufficiently large seasonal variations
in transmission can generate a biennial-looking cycle [134]. Data from England
and Wales displays a four-year cycle in poliomyelitis incidence, while measles has
been observed to have a biennial cycle for the same countries [134]. Reports have
found that many diseases show periodicity in their transmission, such as measles,
chickenpox, mumps, rubella, poliomyelitis, diphtheria, pertussis, and influenza
[66]. Depending on the particular disease of interest and population behavior, an
appropriate model of the disease’s spread may require term-time forcing where the
model parameters change abruptly in time.

The recent increase in seaborne trade and air travel has removed many geographic
barriers to insect disease vectors [26]. For example, the vector responsible in part
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for transmitting diseases such as chikungunya and, more recently, Zika virus, Aedes
albopictus, has developed capabilities to adapt to nontropical regions and is now
found in Southeast Asia, the Pacific and Indian Ocean islands, Europe, the USA, and
Australia [41, 113, 114]. Consequently, studying mathematical models on the spread
of vector-borne diseases has become a large focus in the literature, for example, the
dengue virus [165, 166] and the chikungunya virus [7, 40–43, 113, 114]. Seasonal
changes are an important factor in how these vector-borne diseases spread in a
population and relate to changes in the abundance of vectors and the host population
behavior. For example, Bacaër [7] noted that seasonality plays an important role in
the spread of the chikungunya virus. The 2005 outbreak of chikungunya virus in
Réunion occurred when the mosquito population was at its highest, the end of the hot
season and beginning of the winter season [42]. The transmission of dengue fever is
higher during wet and humid periods with high temperatures ideal for mosquitoes
and lower when the temperature is low [126, 165].

One of the most important aspects of epidemic modeling is the application of
control schemes to eradicate, or at least suppress, an impending epidemic. Infectious
disease models are a vital component of comparing, implementing, evaluating,
and optimizing various detection, prevention, and control programs [65]; epidemic
models are useful in approximating vaccination levels needed for the control of a
disease [116]. For example, in 1967, there were approximately 15 million cases
of smallpox per year which led the World Health Organization (WHO) to develop
an initiative against smallpox. The WHO strategy involved extensive vaccination
programs, surveillance for outbreaks, and containment of these outbreaks by local
vaccination programs [65]. This has been considered the most spectacular success
of a vaccination program [101]; smallpox was eventually eradicated worldwide by
1977, and the WHO estimates that the elimination of smallpox worldwide saves
over two billion dollars per year [65]. There are now vaccines that are effective in
preventing rabies, yellow fever, poliovirus, hepatitis B, parotitis, and encephalitis B,
among others [83].

Aside from seasonal changes in population behavior, the conduct of the pop-
ulation can shift due to, for example, psychological effects (widespread panic of
an impending outbreak) or from public health campaigns to prevent a disease
spread. The aim of this study is to mathematically model infectious diseases,
which take these important factors into account, using a switched and hybrid
systems framework. The scope of coverage includes background on mathematical
epidemiology, including classical formulations and results; a motivation for seasonal
effects and changes in population behavior; an investigation into term-time forced
epidemic models with switching parameters; and a detailed account of several
different control strategies. The main goal is to study these models theoretically
and to establish conditions under which eradication or persistence of the disease is
guaranteed. In doing so, the long-term behavior of the models is determined through
mathematical techniques from switched systems theory. Numerical simulations are
also given to augment and illustrate the theoretical results and to help study the
efficacy of the control schemes.
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The objective of this monograph is to formulate new epidemiology models with
time-varying contact rates or time-varying incidence rate structures, and to study the
long-time behavior of diseases. More specifically, we look to extend epidemiology
models in the literature by the addition of switching, which is the abrupt change
of the dynamics governing the systems at certain switching times. This switching
framework allows the contact rate to be approximated by a piecewise constant
function. Since relatively modest variations in the contact rate can result in large
amplitude fluctuations in the transmission of a disease [69], this is an important
phenomenon that requires attention. Switching is a new approach to this problem
that has not been studied before as an application to epidemiology models. A
specific incidence rate must be chosen appropriately based on the scenario and
disease being modeled for any given infectious disease model. There are numerous
incidence rates which have been used in models in the literature, for example, the
standard incidence, psychological-effect incidences, saturation incidences, media
coverage incidences, and more general nonlinear forms (see [38, 64, 73, 122]).
With regard to different forms of the incidence rate, one of the possible causes
of unexpected failures of a vaccination campaign may be the nonlinearity of the
incidence rate not being properly modeled [38], which gives extra motivation in
studying switching incidence rate structures. The focus of this monograph is to
present new methods for formulating and analyzing epidemic models with time-
varying model parameters and function forms, which are easily extendable to many
different models, as will be shown.

The area of hybrid dynamical systems (HDS) is a new discipline which bridges
applied mathematics, control engineering, and theoretical computer science [45].
HDS frameworks provide a natural fit for many problems scientists face as they
seek to control complex physical systems using computers [45]. Indeed, there
is a growing demand in industry for methods to model, analyze, and under-
stand systems that combine continuous components with logic-based switching
[136]. Practical examples of switched systems, a type of HDS, include areas as
diverse as mechanical systems, the automotive industry, air traffic control, robotics,
intelligent vehicle/highway systems, chaos generators, integrated circuit design,
multimedia, manufacturing, high-level flexible manufacturing systems, power elec-
tronics, interconnected power systems, switched-capacitor networks, computer disk
drives, automotive engine management, chemical processes, and job scheduling
[31, 45, 54, 85]. Examples of systems which can be described by switching systems
with abrupt changes at the switching instances include biological neural networks,
optimal control modes in economics, flying object motions, bursting rhythm models
in pathology, and frequency-modulated signal processing systems [54]. Impulsive
systems will be important when we look to add pulse control to the switched models.
As mentioned, switched systems are described using a mixture of continuous
dynamics and logic-based switching, in that they evolve according to mode-
dependent continuous dynamics and experience transitions between modes that are
triggered by certain events [136]. There are typically two cases in which a switched
system arises [31]: One is when there are abrupt changes in the structure or the
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parameters of a dynamical system, which can be due to, for example, environmental
factors (i.e., outside forces). The second is when a continuous system is controlled
using a switched controller.

This monograph is not meant to be a comprehensive analysis of every modeling
choice possible for mathematical models of infectious diseases. Rather, its aim is
to provide theoretical tools which are applicable to a wide variety of problems
in epidemic modeling. The mathematical methods are revealed one at a time
as this monograph progresses. Aside from modeling the spread of an infectious
disease using a hybrid and switched system, a new approach to mathematical
disease modeling, the unique features of this monograph can be summarized as
follows: (1) using techniques from switched systems theory to study the stability
of epidemic models, (2) focusing on the role seasonality plays in the spread of
infectious diseases, and (3) investigating how abrupt changes in model parameters or
function forms affect control schemes. Accessible to individuals with a background
in dynamical systems theory or mathematical modeling of epidemics, this work is
intended as a graduate-level book for individuals with an interest in mathematical
biology, epidemic models, and, more generally, physical problems exhibiting a
mixture of continuous and discrete dynamics (i.e., hybrid behavior).

The reader gains the fundamentals of compartmental infectious disease mod-
eling, as well as the necessary mathematical background (e.g., stability theory of
ordinary and functional differential equations). The reader learns techniques from
switched and hybrid systems, which are applicable to a variety of applications
in engineering and computer science. Knowledge is gained regarding the roles
seasonality and population behavior play in the spread of a disease, including the
formulation and theoretical tools for analysis of epidemic models and infectious
disease control strategies. In doing so, the reader learns about the concept of
threshold conditions in epidemic modeling, such as the basic reproduction number,
used to prove eradication or persistence of the disease based on model parameters.
Numerical simulations are also given, to help illustrate the results to the reader.

The structure of the monograph is outlined as follows: In Part I, the theoretical
framework is established for the remainder of the monograph. Chapter 2 details
the necessary foundational material. Switching epidemic models are formalized and
studied in Part II: The classic SIR model is investigated in Chap. 3 while extensions
are studied in Chap. 4. Control methods to achieve eradication of the disease
are presented and thoroughly analyzed in Part III. Switching control schemes
are investigated in Chap. 5 while impulsive strategies are studied in Chap. 6. A
case study is given in Chap. 7 detailing an outbreak of chikungunya virus and
possible control strategies for its containment and eradication. Conclusions and
future directions are given in Part IV.
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T�.t1; t2/ Total activation time of the modes M� � M on Œt1; t2�
N.t1; t2/ Number of switches activating the ith mode on Œt1; t21/
N�.t1; t2/ Number of switches activating modes in M� on Œt1; t2/
R.�/0 Basic reproduction number of the infectious disease model .�/
D.�/ Physical domain associated with epidemic model .�/
Q.�/

DFS Disease-free solution associated with epidemic model .�/
Q.�/

ES Endemic solution associated with epidemic model .�/
Cc

H Cumulative number of infected humans with control
C0

H Cumulative number of infected humans without control
F0 Control strategy efficacy rating (F0 � 100Cc

H=C0
H)

� Total number of vaccinations administered during a campaign
� Cost-benefit rating of a control scheme .� � �=.C0

H � Cc
H//
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